### **COST Action TU1208** Civil Engineering Applications of Ground Penetrating Radar

This presentation is part of the TU1208 Education Pack



Structural evaluation of existing pavements based on deflection and GPR measurements

Author: Carl VAN GEEM BRRC, Belgium



COST is supported by the EU Framework Programme Horizon2020

Thank you to Loredana Matera and Santo Prontera for contributing to the editing and layouting of this lecture.

### Summary of the lecture (1/2)

## Introduction to approaches for the evaluation of the structural properties of pavement

- Old-fashioned way: the equivalent single layer model
- Modern way: the back-calculation approach
- Multi-layer model of a road
- Application of loads and measurement of deflections

### **Evolution of mathematical models of pavement**

- Pavement models based on the theory of elasticity
- Pavement models based on the strength of materials
- Model proposed by Burmister (1943)

## Summary of the lecture (2/2)

### **Evaluation of the bearing capacity of a multilayered road structure**

- The equivalent semi-infinite body
- Deflections and interpretation of the surface modulus
- Example: Back-calculation for a three-layer model of a road
- Sensitivity of the procedure

### **Application: Back-calculation and redesign of a road**

- Measured deflections and present road structure
- Back-calculation and redesign with Qualidim
- Study of the influence of layer thicknesses on the road lifetime

### **Biography and contact details of the Author**





## Introduction to approaches for the evaluation of the structural properties of pavement



### The old-fashioned way: equivalent single layer model

- Replace each layer of the multi-layer model of the road by one layer with "equivalent" thickness h<sub>e</sub> (thicker than the sum of thicknesses h<sub>i</sub>)
  - > Multi-layer model: thicknesses  $h_1$ ,  $h_2$ , ...
  - The so-called 'equivalent factors' a1, a2, ... can be calculated by using the following formula:

$$a_i = \sqrt[3]{E_i / 500}$$

Here,  $E_i$  is the layer elasticity modulus, measured or taken from a table (this is a parameter depending on the layer material)

Thickness of the equivalent layer:

$$h_e = \sum a_i + h_i$$







# Equivalent single layer model: thickness of overlay...

- Determine traffic (kN<sub>c</sub>): Past, present and future traffic
- Graphs established in 1991 (BRRC report R56/85)





Traffic (kNc)

### Thicknesses of crushed stone base course and asphalt layer



Traffic (kNc)



### Equivalent single layer model: thickness of overlay...

- Traffic maps are used to determine the thicknesses H<sub>1</sub>, H<sub>2</sub>, H<sub>3</sub> of the ideal multi-layer road.
- The ideal equivalent thickness is:  $H_e = \Sigma a_i \cdot H_i$  (for the equivalent 1-layer model).
- Then, do overlay:  $W = (H_e h_e) / 2.7$  (with  $a_i = 2.7$  for a bituminous layer) is the needed thickness of the bituminous overlay, in order to achieve equivalence with the ideal multi-layer road structure.



### The modern way: back-calculation approach

- Objective: Determine E-modules of all layers
  - Compute deflection bowl from a multi-layer model
  - Compare the computed deflection bowl with the measured deflection bowl
  - If deflection bowls are not "identical" then modify E-modules and iterate...





### The modern way: back-calculation approach

| 10<br>Iombre de<br>3 | couches   | Remark<br>peut étr | er : 1 module<br>e Taul<br>Couche d'usure<br>Sous-Couche 1<br>Sous-Couche 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nodule         E of<br>(R/mm²)         E of<br>on           1000         Г           50000         Г           400         Г | connu, Des<br>chez ani<br>(Ev<br>)<br>[] | 946 d'<br>Kotropie<br>MEN <br>1.00<br>1.00 | 0.35<br>0.50    | Epainseur<br>Innel<br>156<br>200<br>Adhérenc<br>Gise<br>patlat =<br>1.00<br>1.00 |
|----------------------|-----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------|-----------------|----------------------------------------------------------------------------------|
| Appareil             | de mesure | u de défier        | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | Modules                                  | destiques e                                | stinis (N/ner)  |                                                                                  |
| F Curvis             | mètre     |                    | Second and the second s |                                                                                                                              | E1                                       | E2                                         | E3              | [*]Modules                                                                       |
| C Faller             | Weight    | Curvian            | être 130kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                            | 528                                      | 69012                                      | 306             |                                                                                  |
|                      | Repon     | Pression           | Coord a Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | und y                                                                                                                        |                                          |                                            |                 |                                                                                  |
| - C.                 | [mm]      | (N/mm*)            | [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (mm)                                                                                                                         | Résultats                                | de déflexio                                | es              | 0.74                                                                             |
|                      | 111.72    | 0.00               | 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95                                                                                                                           | Unterence                                | a moșervie l                               | pred to         | 0.24                                                                             |
| Capteurs             | sime)     | pinn)              | Déflesions(an)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calcul                                                                                                                       | Capteurs                                 | Déflexion                                  | s calculées(µm) | Différences(am)                                                                  |
| 1                    | 0         | 0                  | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3033                                                                                                                         | 1                                        | 44.9                                       |                 | 0.07                                                                             |
| 2                    | 300       | 0                  | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 534                                                                                                                          | 2                                        | 39.9                                       |                 | 0.12                                                                             |
| 3                    | 600       | 0                  | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350                                                                                                                          | 3                                        | 35.5                                       |                 | -0.47                                                                            |
|                      | 900       | 0                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                                                                                                                          | 4                                        | 29.7                                       |                 | 0.29                                                                             |
|                      |           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                          |                                            |                 |                                                                                  |

- Then redesign the "current structure + overlay" (as if you are designing a new road) with a suitable software and estimate the expected lifetime.
- If results are poor, then do changes in deeper part of the road structure.

### **Back-calculation software tools**

Free software:

"Qualidim": Intended for Belgium, to be used by non-specialists

- Commercial software:
  - Alizé-LCPC (itech-soft)
  - PAVERS (VIA Aperta)
  - Rosy (SWECO carlBro)
  - ELMOD (Dynatest)



### **Back-calculation: Qualidim**





### Model of the road: a multi-layer



Diameter: 2a **Pressure:** p For each layer i Thickness: h<sub>i</sub> Modulus: E<sub>i</sub>

Poisson:  $\mu_i$ 



## **Application of loads and their effects**

• A load is applied to the multi-layer system...





# Distribution of the load and measurement of deflections

 Only the part of the pavement that is subjected to stresses, will deform... (i.e. only the area inside the red cone, in the sketch)



The farther the deflection is measured from the centre of impact, the less the deflection is caused by the upper part of the road structure...





## Evolution of mathematical models in pavement design

See also the book:

Frans Van Cauwelaert, « Pavement design and evaluation: The required mathematics and applications,» ISBN 978-2-960043-00-6



### Pavement models based on the theory of elasticity

- Semi-infinite body subjected to a vertical load P
  - The subgrade is an isotropic body (Boussinesq, 1883)

$$\sigma_z = -\frac{3P}{2\pi z^2}$$

Definition of a stress concentration factor (Fröhlich, 1934)

$$\sigma_z = -\frac{\nu P}{2\pi z^2}$$
 Concentration:  $\nu > 3$   
Dispersion:  $\nu < 3$ 

The subgrade is an orthotropic body (Lekhnitskii, 1963)

$$\sigma_{z} = -\frac{1+s+s^{2}}{s^{2}} \frac{P}{2\pi z^{2}} \qquad s^{2} = \frac{n-\mu^{2}}{n^{2}-\mu^{2}} \qquad n = \frac{E_{vert}}{E_{hor}}$$

### Pavement models based on the theory of elasticity

Vertical stress vs anisotropy



(Lekhnitskii, 1963)



### Pavement models based on the strength of materials

- Slab subjected to a vertical pressure p
  - Equilibrium equation

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r}\right)\left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r}\frac{\partial w}{\partial r}\right) = \frac{p-q}{D}$$
E, I
k, G
q

р

Westergaard (1924): The subgrade is a series of vertical springs (k)

$$q = kw$$

Pasternak (1954): The subgrade is a series of vertical (k) and horizontal springs (G)

$$q = -G\left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r}\frac{\partial w}{\partial r}\right) + kw$$

### Pavement models based on the strength of materials

**Surface deflection** 





### Model proposed by Burmister (1943)

- Multilayered structure
  - Hypotheses of the theory of elasticity: equilibrium, continuity and elasticity for each layer

## Model proposed by Burmister (1943)

 Mathematical solution (here, we skip the mathematical steps, but you are encouraged to calculate them!)

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{\partial^2}{\partial z^2}\right) \left(\frac{\partial^2 \varphi_i}{\partial r^2} + \frac{1}{r}\frac{\partial \varphi_i}{\partial r} + \frac{\partial^2 \varphi_i}{\partial z^2}\right) = 0$$

By introducing in the equation the expression  $\phi(r,z) = J_0(mr)f(z)$ , we obtain:

$$\left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r}\right) J_0(mr) = -m^2 J_0(mr)$$
$$J_0(mr) \left(m^4 - 2m^2\frac{\partial^2}{\partial z^2} + \frac{\partial^4}{\partial z^4}\right) f(z) = 0$$

$$\varphi_i(r,z) = J_0(mr) \left( A_i e^{mz} - B_i e^{-mz} + z C_i e^{mz} - z D_i e^{-mz} \right)$$

### Model proposed by Burmister (1943)

 Stresses and displacements (again, we ignore the mathematical steps leading to these formulas):

$$\sigma_{z} = f(r) \left\{ Am^{2}e^{mz} + Bm^{2}e^{-mz} - (1 - 2\mu + mz)Cme^{mz} + (1 - 2\mu - mz)Dme^{-mz} \right\}$$

$$\tau_{rz} = f(r) \Big\{ Am^2 e^{mz} - Bm^2 e^{-mz} + (2\mu + mz)Cme^{mz} + (2\mu - mz)Dme^{-mz} \Big\}$$

$$u = \frac{f(r)}{E} \left\{ Am^2 e^{mz} + Bm^2 e^{-mz} + (1+mz)Cme^{mz} - (1-mz)Dme^{-mz} \right\}$$

$$w = \frac{f(r)}{E} \left\{ Am^2 e^{my} - Bm^2 e^{-my} - (2 - 4\mu - mz)Cme^{mz} - (2 - 4\mu + mz)Dme^{-mz} \right\}$$



## **Boundary conditions (Burmister)**

- Surface (load)
  - Vertical stress = p
  - Shear stress = 0
- Interfaces (layers in contact)
  - Vertical stresses are all equal
  - Shear stresses are all equal
  - Deflections are all equal



- Displacements are equal: Friction
- Shear forces are null: Slip
- Intermediate scenario: Partial friction
- Subgrade, there are two alternatives
  - Semi-infinite body
  - Fixed bottom

COST is supported by the EU Framework Programme Horizon2020



р



# Evaluation of the bearing capacity of a multilayered road structure



### The equivalent semi-infinite body





## The further away from the centre of pressure...



 Deflection "at the centre of impact": is influenced by the whole road structure

 $\rightarrow$  hence, the derived surface modulus characterizes the whole road structure

 Deflection "far away" from the centre of impact: it is influenced by the lower part of the road structure, only

 $\rightarrow$  hence, the derived surface modulus characterizes the lower part of the road structure



### **Identical deflections**





### Interpreting the surface modulus

The surface modulus E<sub>0</sub>(i) corresponds to the deflection w(i) measured at a distance r(i)

$$E_0(i) = \frac{2(1-\mu^2)}{r(i)w(i)} \frac{P}{2\pi} = pa^2 \frac{(1-\mu^2)}{r(i)w(i)}$$

- Pressure p, radius a, Poisson coefficient (Poisson's ratio) μ
- Model used: Boussinesq's theory, computation of the elastic modulus of a homogeneous half-space
- So, from the measured deflection w(i) at a distance r(i), we can compute the surface modulus E<sub>0</sub>(i)



## **Example: Compute E<sub>0</sub>, then draw conclusions on the E-moduli of the different layers of the 3-layer model**

Input: Measured deflections at different distances from load centre



A three-layer road model with decreasing moduli

A three-layer road model with a stiff interlayer

A three-layer road model with a weak interlayer

A three-layer road model with an increasing modulus of the subgrade or a stiff bottom



### Back-calculation of a three-layer (1/2)

- Let w<sub>1</sub>, w<sub>2</sub>, ... w<sub>n</sub> be the deflections at the distances r<sub>1</sub>, r<sub>2</sub>, ..., r<sub>n</sub>
- Let us assume the seed values E<sub>10</sub>, E<sub>20</sub>, E<sub>30</sub>
- We compute the theoretical deflections z<sub>0</sub>(1), z<sub>0</sub>(2),..., z<sub>0</sub>(n)
- We choose  $E_{11} = E_{10} \cdot z_0(1) / w_0$ ,  $E_{21} = E_{20} \cdot z_0(2) / w_1$ ,  $E_{31} = E_{30} \cdot z_0(n) / w_n$
- With E<sub>11</sub>, E<sub>20</sub>, E<sub>30</sub>, we compute z<sub>1</sub>(1), z<sub>1</sub>(2),... z<sub>1</sub>(n)
- With E<sub>10</sub>, E<sub>21</sub>, E<sub>30</sub>, we compute z<sub>2</sub>(1), z<sub>2</sub>(2),... z<sub>2</sub>(n)
- With E<sub>10</sub>, E<sub>20</sub>, E<sub>31</sub>, we compute z<sub>3</sub>(1), z<sub>3</sub>(2),... z<sub>3</sub>(n)

### Back-calculation of a three-layer (2/2)

- We apply the "Al Bush III" algorithm:
  - For k = 0 to 3, we define:

 $z_{k}(i) = a(i)\log E_{1.} + b(i)\log E_{2.} + c(i)\log E_{3.} + d(i)$ 

From this, we compute the solution for a(i), b(i), c(i), d(i)

We introduce these in the n equations (i=1,..,n):

 $z_0(i) = a(i)\log E_1 + b(i)\log E_2 + c(i)\log E_3 + d(i)$ We minimise  $\sum_{1}^{n} \left[ w(i) - z_0(i) \right]^2$  and obtain the expected values  $E_1$ ,  $E_2$ ,  $E_3$ 

- If this sum of squares is "small enough" then we stop
  - Else we iterate with  $E_1$ ,  $E_2$ ,  $E_3$  as new seed values...

### Sensitivity of the procedure

- Given  $E_1 = 10000$ ,  $E_2 = 3000$ ,  $E_3 = 500$ 
  - We compute w(0)=69.6, w(1)=38.1, w(2)=26.2, w(3)=19.1, w(4)=14.3, w(5)=11.2, w(6)=9.0, w(7)=7.5, w(8)=6.5

### **Backcalculation**

| w(0) | E <sub>1</sub> | E <sub>2</sub> | E <sub>3</sub> | Fit  | Loops |
|------|----------------|----------------|----------------|------|-------|
| 69.6 | 10036          | 2993           | 500            | 0.02 | 7     |
| 75.0 | 6469           | 3351           | 503            | 0.06 | 6     |
| 58.0 | 33840          | 2371           | 497            | 0.10 | 7     |





### Application: Back-calculation and redesign of a road



### **Deflections & present road structure**

Deflections measured with a FWD in the middle of a concrete slab:





COST is supported by the

EU Framework Programme Horizon2020

### **Deflections & present road structure**

Present road structure, hypothetical E-moduli (seed values):

| Layer/Type of material     | Thickness<br>(mm) | Modulus<br>(N/mm²) | Poisson Ratio |
|----------------------------|-------------------|--------------------|---------------|
| Concrete slabs (no dowels) | 180               | 37000              | 0.20          |
| Base course                | 500               | 2000               | 0.35          |
| Stabilized subbase         |                   | 350                | 0.50          |



### **Back-calculation**

| 🍊 Terugbe                                                                                                                                                                                                                                                     | rekening     |                                 |                                                                  |                                                                                                                                                                                                            |                       |                                                             |                                                    |                          |                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------|----------------------------------------------------|--------------------------|--------------------------------------------------------|
| Maximum a<br>iteraties<br>10<br>Aantal lage<br>3                                                                                                                                                                                                              | aantal<br>:n | Opmerkir<br>kan vast<br>genomen | ng: 1 modulus<br>worden<br>Toplaag<br>Onderlaag 1<br>Onderlaag 2 | Modulus<br>(N/mm²)<br>37000<br>2000<br>350                                                                                                                                                                 | E bekend,<br>vink aan | Graad van<br>anisotropie<br>(Ew/Eh)<br>1.00<br>1.00<br>1.00 | Coëfficiënt<br>van Poisson<br>0.20<br>0.35<br>0.50 | Dikte (mm)<br>180<br>500 | Totale<br>hechting =<br>1;<br>Volkomen<br>0.60<br>1.00 |
| Deflectiemeter       Geschatte elasticiteitsmoduli         Curviameter       Valgewicht 50 kN       Geschatte elasticiteitsmoduli         Straal (mm)       Druk (N/mm²)       v-co (mm)       Deflectieresultaten         150.00       0.785       0       0 |              |                                 |                                                                  |                                                                                                                                                                                                            |                       |                                                             |                                                    |                          |                                                        |
| 150.00     0.785     0     0       Posities en gemeten deflecties     Oppervlakte-e (N/mm²)       Posities van de sensoren       Sensorer (nm)     Deflecties (um)                                                                                            |              |                                 |                                                                  | Intal iteraties 5<br>Criterium1 = 0 vereenstemming bereikt<br>2 = 2 gelijke elasticiteitsmoduli<br>3 = Geen overeenstemming<br>4 = Geschatte moduli<br>Personen Berekende deflecties (um) Verschillen (um) |                       |                                                             | 5<br>j bereikt<br>eitsmoduli<br>mming<br>(µm)      |                          |                                                        |
| 1                                                                                                                                                                                                                                                             | 0            | 0                               | 91                                                               | 1941                                                                                                                                                                                                       | <sup>9</sup>          | 91.2                                                        |                                                    | -0.19                    |                                                        |
| 2                                                                                                                                                                                                                                                             | 300          | 0                               | 76                                                               | 581                                                                                                                                                                                                        | 2                     | 75.6                                                        |                                                    | 0.37                     | _                                                      |
| 3                                                                                                                                                                                                                                                             | 600          | 0                               | 59                                                               | 374                                                                                                                                                                                                        | 3                     | 58.9                                                        |                                                    | 0.11                     | _                                                      |
| 4                                                                                                                                                                                                                                                             | 900          | 0                               | 46                                                               | 320                                                                                                                                                                                                        | 4                     | 46.2                                                        |                                                    | -0.16                    | _                                                      |
| 5                                                                                                                                                                                                                                                             | 1200         | 0                               | 36                                                               | 307                                                                                                                                                                                                        | 5                     | 36.9                                                        |                                                    | -0.88                    |                                                        |
| 6                                                                                                                                                                                                                                                             | 1500         | 0                               | 30                                                               | 294                                                                                                                                                                                                        | 6                     | 30.1                                                        |                                                    | -0.07                    |                                                        |
| 7                                                                                                                                                                                                                                                             | 1800         | 0                               | 26                                                               | 283                                                                                                                                                                                                        | 7                     | 25.0                                                        |                                                    | 0.98                     |                                                        |
| Berekening                                                                                                                                                                                                                                                    |              |                                 |                                                                  |                                                                                                                                                                                                            |                       |                                                             |                                                    |                          |                                                        |



### **Back-calculation**

Results (with software Qualidim©):

| Layer/Type of material     | Thickness<br>(mm) | Modulus<br>(N/mm²) | Poisson<br>Ratio |
|----------------------------|-------------------|--------------------|------------------|
| Concrete slabs (no dowels) | 180               | 35928              | 0.20             |
| Base course                | 500               | 1081               | 0.35             |
| Stabilized subbase         |                   | 335                | 0.50             |

Present structure, hypothetical E-moduli (seed values):

| Layer/Type of material     | Thickness<br>(mm) | Modulus<br>(N/mm2) | Poisson<br>Ratio |
|----------------------------|-------------------|--------------------|------------------|
| Concrete slabs (no dowels) | 180               | 37000              | 0.20             |
| Base course                | 500               | 2000               | 0.35             |
| Stabilized subbase         |                   | 350                | 0.50             |



Designing new roads...





| 🍊 Dimensio    | onering - halfstijve        | e of flexibele stru      | ctuur             |          |              |                       | _ 🗆 ×               |
|---------------|-----------------------------|--------------------------|-------------------|----------|--------------|-----------------------|---------------------|
| Structuur bev | waren S <u>t</u> ructuur ve | randeren <u>R</u> apport |                   |          |              |                       |                     |
|               |                             |                          |                   |          |              |                       |                     |
|               |                             |                          |                   |          |              |                       |                     |
| Verhardin     | g                           |                          |                   |          | Verwacht a   | antal zware voertu    | igen 8.93E+006      |
| Aantal lag    | en (1 tot 4)                |                          | Aantal lage       | -        | -Schatting y | van de prestaties van | de totale structuur |
|               |                             | Туре                     | h (m              | n)       | 1. Bezwijkk  | ans (%) na            | 50.3                |
| Astalt        | AB-1B                       |                          | <u> </u>          | *        | 20 jaren     |                       |                     |
| Asfalt        | AB-3A                       |                          | ▼ 100             | -        | 2. Voor een  | bezwijkkans van 50    | %                   |
|               | Complet                     | elv new                  | road              |          | - Aantal j   | imation of            | traffic and         |
|               |                             |                          |                   |          | - Aantal :   | zware voertuigen      | 8.79E+006           |
|               | St                          | ucture                   |                   |          | Hechting     | expected I            | lietime             |
| (*)Gemodil    |                             | (**) Asfalt met g        |                   |          | Model        | Standaardw            | aarden 💌            |
| Gebonder      | n fundering                 |                          |                   |          |              |                       | Details             |
| • Туре        |                             | Schraal betor            | n (R'bk = 10 MPa) | <b>T</b> |              |                       |                     |
| O Modul       | us (N/mm²)                  |                          | 450               | -        |              |                       |                     |
| h (mm         | J                           |                          | 150               | *        |              |                       |                     |
| Congebone     | den fundering 🔲             |                          |                   | -        |              |                       |                     |
| C Modul       |                             |                          |                   |          |              |                       |                     |
| h (mm         |                             |                          |                   | -        |              |                       |                     |
|               | dering II                   |                          |                   |          | Perek        |                       | amina Tama          |
| • Туре        |                             | Type I                   |                   | -        | Derek        |                       | orming v rerug      |
| O Modul       | lus (N/mm²)                 |                          |                   |          |              |                       |                     |
| h (mm         | )                           |                          | 400               | *        |              |                       |                     |
| Ondergro      | nd                          |                          |                   |          |              |                       |                     |
| С Туре        |                             |                          |                   |          |              |                       |                     |
| ⊙ C.B.R.      |                             | 4                        |                   |          |              |                       |                     |
| O Modul       | us (N/mm²)                  |                          |                   |          |              |                       |                     |
| Graad         | l van anisotropie           |                          | 1.00              |          |              |                       |                     |
|               |                             |                          |                   |          |              |                       |                     |



Overlay on existing road...





| 🝊 Versterking - Overlay op besta                                                                                                                                                            | and beton                                        |                         |                                                                                                                     |                                                                                                                                   | <u> </u>                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Overlay op bestaar<br>Verharding<br>Aantal lagen (1 tot 4)                                                                                                                                  | ad beton                                         | ıtal lagen              | Verwacht aa                                                                                                         | Soorten van versterking<br>Overlay<br>ntal zware voertuigen                                                                       | C Inlay<br>8.93E+006               |
| (**)<br>Asfalt<br>Modulus (N/<br>Beton 35928                                                                                                                                                | Type                                             | h (mm)<br>50 +<br>180 + | Schatting va<br>Bezwijkkar<br>20 jaren<br>ESTI<br>Voor een t<br>Aant (2)<br>Aantal zw                               | n de nrestaties van de total<br>ns (%) na<br>mate of traffic<br>rezematies van de traffic<br>rected life-ti<br>vare voertuigen    | 0.0<br>c and<br>meo<br>8.69E+009   |
| (*)Gemodificeerd bitumen (**)<br>Gebonden fundering<br>C Type Existing<br>C Modulus (N/mm²)<br>h (mBack-calcul<br>Ongebonden fundering<br>C Type<br>C Type<br>C Modulus (N/mm²) 1<br>h (mm) | Asfalt met gekende n<br>structure,<br>ated E-mod | adulus                  | Model<br>Periode (tijd)<br>Voorschrifter<br>Type van ove<br>in de voegen<br>I✓ Temper<br>Gekozen ter<br>DGB / I = 3 | Standaardwaarden<br>0-10 jaar<br>erdracht<br>Ongedeuvelde var<br>ratuurgradiënt (In-reken<br>mperatuurgradiëntenmodel :<br>1,50 m | Details  Details  Details  Details |
| Onderfundering<br>○ Type<br>ⓒ Modulus (N/mm²) 1<br>h (mm)<br>Ondergrond<br>○ Type<br>○ C.B.R.<br>ⓒ Modulus (N/mm²) 3                                                                        | 081 💌                                            | 250                     | Bereke                                                                                                              | ning 🖾 Spoorvorming                                                                                                               | <b>√</b> Terug                     |
| Modulus (N/mm <sup>2</sup> )     Graad van anisotropie                                                                                                                                      | 50 💌                                             | 1                       |                                                                                                                     |                                                                                                                                   |                                    |



## **Evaluation with a theoretical model**

### • Concept: Theoretical structure:

| Layer/Type of material                           | Thickness<br>(mm)      | Modulus<br>(N/mm2) | Poisson Ratio |
|--------------------------------------------------|------------------------|--------------------|---------------|
| Concrete slabs<br>(no dowels)                    | Between 180 and<br>200 | 37661              | 0.20          |
| Unbound base course,<br>granular material Type I | 400                    | 650                | 0.45          |
| subbase<br>(stabilized with chalk)               | 200                    | 2000               | 0.50          |
| Clay ground                                      |                        | 20                 | 0.50          |

Traffic: 100 trucks/day, 300 days/year, growth +2% per year:

| Axle load:          | 50 kN | 90 kN | 120 kN |  |
|---------------------|-------|-------|--------|--|
| 100 trucks per day, | 20%   | 60%   | 20%    |  |
| 300 days per year   |       |       |        |  |



# Study of the influence of thickness on the road lifetime...

| Cimensionnement des chaussées - S.P.W.                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DIMENSIONNEMENT                                                                                                                                              |
| 7 Dimensionnement des chaussées - 5 P.W Cas - Dim 1                                                                                                          |
| Geval Taal Database Functionaliteiten Verkeer Klimaat Berekening Hulp Informatie                                                                             |
| <ul> <li>✓ Functionaliteit: Dimensionering</li> <li>✓ Verkeer: WIM</li> <li>✓ Klimaat: Namur</li> <li>✓ Structuur: Halfstijf</li> <li>Terugbereke</li> </ul> |
| Versie 2.3.26.0 20.11.2012                                                                                                                                   |
| DimMET<br>Conter                                                                                                                                             |
| Version 2.3.26.0                                                                                                                                             |



# Study of the influence of thickness on the road lifetime...





### 2 cm extra thickness is important!

 Lowering the thickness of the concrete slab in the theoretical model makes the estimated lifetime drop drastically

| Thickness of concrete slab (mm)                                      | 200                          | 190              | 180                         |
|----------------------------------------------------------------------|------------------------------|------------------|-----------------------------|
| Number of standard axles N <sub>c</sub><br>that can go over the road | <b>2.45</b> *10 <sup>6</sup> | <b>6.60*10</b> ⁵ | <b>1.52*10</b> <sup>5</sup> |
| Estimated life-time (in years)                                       | > 40                         | 18               | 5                           |

Note: this does not mean that the thicknesses of the layers underneath are of no significance...



### Author

Dr. Carl Van Geem (c.vangeem@brrc.be) is a researcher in road management and monitoring techniques, since 2004 he is working in the Mobility, security and road management (MSM) division of the Belgian Road Research Centre (BRRC), in Brussels, Belgium. He is a Working Group Member of the COST Action TU1208.

In 1996, Carl Van Geem earned the doctoral degree in technical sciences from the Research Institute on Symbolic Computation (RISC-Linz), Johannes Kepler University, Linz, Austria.



The BRRC has several devices for the evaluation of road surface properties (roughness, skid resistence), for pavement management (visual inspection device "SAND"), and for measuring the bearing capacity of roads (FWD, curviameter, GPR). The main topic of Carl's research is the interpretation of data obtained with these monitoring devices for an optimal management of road maintenance. Carl participated in several national and international research projects, including a "national pre-normative research project on the indicators of roughness", the COST Action 354 "Performance Indicators for Road Pavements", the PIARC technical committee D1 "Management of Road Infrastructure Assets", and the FP7 project "Tomorrow's Road Infrastructure Monitoring and Management (TRIMM)".





# Thank you

**COST Action TU1208** Civil Engineering Applications of Ground Penetrating Radar www.GPRadar.eu info@GPRadar.eu

www.cost.eu

f

www.facebook.com/COSTActionTu1208/

