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— Lecture Layout (1/2)

" |ntroduction to the topic of the lecture
= UWB radar systems for the detection of vital signs
= (Classification of the main types of person movements

= Detection of respiratory movement

(continues in the next slide....)
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— Lecture Layout (2/2)

= Main steps of radar signal processing for the detection of a static person:
Raw data preprocessing

Increasing the SNR

Background subtraction

Enhancement of target echo

Target detection

Time-Of-Arrival estimation
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Target localization
= Example
m  Conclusions and References

= Biographies and contact details of the Authors
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____ Introduction

= Asocial trend at the beginning of 21st century:

» Density of population is increasing in towns and urban agglomerations.

= |mpact

» There is a higher density of people during disasters (earthquakes,
tsunamis, earth slides, avalanches, building collapses), which results
in a higher number of injured persons.

= Needs, where GPR can be useful
» Disaster surviving victim is the most critical for the survivor lifesaving.

GPR can help to find the victims.
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____ Introduction

= A social trend at the beginning of 21st century:

» Criminality is growing and political tensions are causing terrorism.

= |mpact

» Suitable military and security operations are defined and carried out;
law enforcement operations take place.

» Monitoring of critical environments (such as reservoirs and power
plants) is necessary, to detect unauthorized intrusions.

= Needs, where GPR can be useful

» GPR represents a useful technological and technical solution, to

support military and security operations, and to monitor critical
environments.
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____ Introduction

= A social trends at the beginning of the 21st century:

» Growth of the percentage of elderly people.

= |mpact

» Monitoring of elderly people at home to detect unexpected
emergency events (such as fall down and unconsciousness, but also
evil intruders).

= Needs, where GPR can be useful

> Intruder detection and localization.

» Detection of emergency events with ambient assisted living programs.
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____ Introduction

= The general aim: Saving human
beings and increasing their
safety in emergency events.

" The main idea: using GPR to
detect, localize and track living
human beings in complex
scenarios.
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>

Introduction

Smart sensor networks are crucial for the achievement of the
purposes described in the previous slides. Such networks
include: cameras, infrared and ultrasonic sensors,
microphones, LIDARS, narrowband radars, and more... but also
UWAB sensors, such as those used in GPR systems.

UWB sensors present several benefits: they work during day
and night, in all-weather conditions (rain, snow, dark dense
smoke and presence of other particles, fog), they can detect
moving people located behind obstacles, and they can detect
vital signs of persons (breathing and heart beating). Additional
benefits are: UWB sensors allow imaging of static objects and
subsurface imaging, as well as impedance spectroscopy.
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UWB radar systems
for the detection of vital signs
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UWB radar systems: basic concepts

= UWB radar (RAdio Detection And
Ranging) systems emit UWB
electromagnetic signals.

= Most GPR systems are UWB radar
systems.

= Main properties of UWB radar systems:
» Absolute bandwidth of emitted electromagnetic signal > 500 MHz
» Fractional bandwidth of emitted electromagnetic signal > 0.2
» Resolution: 1 cm—3cm
» Range: 10 m—100m
» Emitted power: 1 mW — 10 mW
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____ UWB radar systems: basic concepts

=" Electromagnetic-signal attenuation versus frequency
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UWB radar systems: basic concepts

Stimulating signal

Port 1
— y Q Target

a

reference
b
Rx -— o Q Target echo
|-- \ Port 2
h(7) ° System under Test

Impulse response

m Raw radar signals/data are impulse response(s) of the environment.
The electromagnetic signal emitted by the radar propagates from the
transmitting to the receiving antenna of the radar and is influenced by

the physical and geometrical properties of the environment.
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____ UWB radar systems: basic concepts

Reflection due to moving object
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UWB radar systems: basic concepts
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m Aradargram is a set of impulse responses of the environment collected
in different spatial points (for example, along a linear profile).
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UWB radar systems: basic concepts

m An impulse response includes: l‘A
» Direct wave
> Tar.get echoes h(t,‘l,')
» Noise
» Clutter '\
> Narrow-band interference SloR/OReE gt :ime
0 T
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Classification of the main types
of person movements
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Person type

Description

Example

Classification of person movements

Basic principle of detection

Moving person |

Person moving within the
monitored area in such a
way that his/her
coordinates are changing

Walking, running,
crawling persons

Detection of time changes of
impulse responses acquired by
the radar along the
observation (slow) time axis

Moving person Il

Moving person, but his/her
coordinates do not change

Persons whose limbs
(legs, hands, head) or
trunk are in motion

Detection of time changes of
impulse responses scanned by
the radar along the
observation (slow) time axis

Static person

“Motionless” person
whose coordinates are not
changing

Sleeping persons,
unconscious persons,
person being liable as

surety, etc.

Detection of person vital signs
such as respiratory motions or
heart beating

Person changing
nature of his/her
movement

The same person is static
in some instants and
moving in other instants

Persons walking with
some stops

Joint detection of time changes
of impulse responses and
person vital signs
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Detection of respiratory movement
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Respiratory movement detection

Radar antenna Tx=Rx

d0
.
P
i
h(t,T)
Emitted signal is Pulse compression
scattered by the target method

Transmitted ‘ Received ‘ Impulse
Signal p(t, 7) Signal r(¢t, 1) Response h(t, )

N
h(t,T) = Z Ap(t,T) + Agp(t — ta(D)) + n(t,T) = hyn(t,T) + ho(t, T) + n(t, 7)
i=1
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m Raw signal model
N

Respiratory movement detection

h(t,T) = Z Aip(tT) + Aop(t — td(‘t)) + n(t,t) = hy,(t,t) + ho(t,T) + n(t, 1)
i=1

h(t,T) |Impulse response
A; Path gain of the i-th signal path
p(t,T) | Transmitted signal
Ay Reflections of the radar signal by static objects
_ 8. c—1
Time delay (associated with vital signs) ¢ _2;(? 13 ms™"tq(7)
t;(t) | corresponding to the time-of-arrival (TOA) of a ey
static person ¢
n(t,T) | Gaussian noise
N
hy,,(t, T) | Stationary clutter hp,(t,T) = Z Aip(t —t;)
i=1
hy(t,T) | Component due to static person ho(t,T) = App(t — t4(7))
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Respiratory movement detection

m Raw signal model

» Periodic changes of the distance person-radar antenna due to periodical
chest movement (breathing and heartbeats)

d(ty, ) =dy+my(t) + my(t) = dy + myg sin(2rf,t) + myesin(2nf,t)

Breathing and
mpo Mpo heartbeat
amplitude
Breathing and f_beB=<0.2Hz,0.7Hz>
fo fh heartbeat Changes of the distance person-
frequency radar antenna due to breathing
my, (T) myo sin(2nf,1) Changes of the distance person-
Myosin(27f ,T) radar antenna due to breathing
_ 2dty, 2my, . Changes of TOA | Changes of the distance person-
tg = C + C sin(2mf,7) due to breathing | radar antenna due to heartbeat
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Respiratory movement detection

m Raw signal model

2d(to) | 2";"’ sin(anbr)D

N
i=1

C
: : : 2d
The signal hy(t, T) can be expanded in Taylor series around t = £y = —as follows

1
ho(t,T) = Agp(t — to) + Aep'(t — to)[—my sin(2rf,T)] + EAOPH(t — to)[—my sin(2f,T)]* + -

Agp(t — ty) Average reflection of the body

Aogp' (t — to)[—my sin(21f,T)] Main contribution of the breathing signal

Contribution of the breathing signal due to

1
> Aop" (t — to)[—my sin(2wfT)]* + - higher harmonics

2
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____ Respiratory movement detection

m Conclusion 1

» The components of the impulse response h(t, ) due to the respiratory
movement of a person (hy(t, 7)) can be regarded as a periodic signal
with the fundamental harmonic f; (breathing frequency)

m Conclusion 2

» A static person can be detected based on the detection of periodical
signal components in a radargram. This correspond to a periodical
movement with a frequency f, € B with regards to the slow-time
variable (7) for a constant fast-time instant (t = t,)

m Conclusion 3

» The distance of a person from the radar antenna can be estimated
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____ Respiratory movement detection

Step 1

Basic idea / steps of motionless person localization

Detection of periodical components in the radargram,
corresponding to a periodical movement of human chest in
the frequency band <0.2 Hz, 0.7 Hz>

Note: The frequency components considered in Step 1 have to be detected by analysing
the radargram under the assumption of constant propagation time.

Step 2

Estimation of the time-of-arrival (TOA) of the detected target

Note: TOA corresponds to the time instant of the fast-time when the target is detected.

Step 3

Person localization by multilateration methods

Note: The UWB radar has to be equipped with at least one Tx and 3 Rx antennas.

RECEl COST is supported by the
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Main steps of radar signal processing for
the detection of a static person
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Steps (phases) for the localization
of a static person

Raw radar data preprocessing
Increasing of useful signal

(target echo)-to-noise ratio (SNR)
Background subtraction
Enhancement of target echo

Target detection

Time of arrival (TOA) estimation
(TOA estimation + substitution of a
distributed target with a single
point target)

m Target localization (trilateration
method implemented, e.g., by
means of a direct localization
method)

COST is supported by the
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Phase 1: Raw radar data preprocessing

m Purpose

» UWB radar system calibration
m Methods

» Calibration by using a metal plate (calibration measurement with a metal
plate in a defined position)

» Zero-time setting based on the use of the signal cross-talk

m Outcome
» Pre-processed radargram
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Phase 2: Increasing the SNR

m Purpose

» |Improvement of target echo-to-noise ratio (SNR)
m Assumptions
> Noise is a stationary white Gaussian signal, due to antennas and
electronic circuits of the radar

» Components of impulse responses due to a target and clutter can be
regarded as the same within the interval T_€<1,,7,>

m Methods

» Method of impulse response averaging (usually hundreds
impulse responses)

m Outcome

» Radargram with higher SNR (a higher SNR allow to achieve a
higher probability of target detection)
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Phase 2: Increasing the SNR

m Purpose

» Improvement of target echo-to-noise ratio (SNR)
m Basicidea

h(t,t) =s(t,t)+ c(t,T) + n(t, 1)
E[h(t,T)] = E[s(t,T) + c(t,T) + n(t,T)] = E[s(t,T) + c(t,T)] + E[n(t, T)]
E[n(t,1)] >0

E[h(t,T)] - s(t,T) + c(t, T)

E[h(t, T,)] = P——— Z h(t,t) =s(t, 1) + c(t, ‘l'z)

T=T2—T1

The residual white noise
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Phase 3: Background subtraction

m Purpose

» Improvement of target echo to-clutter ratio (SCR)
m Assumption

» Clutter is a stationary signal
m Methods

Mean, median

Adaptive exponential averaging Gaussian background
Gaussian mixture method

Moving target indicator (e.g., using FIR filtering)
Prediction

Principal component analysis

Mean subtraction and linear-trend subtraction
Exponential averaging method

VVVVVVYVYYVY

m Outcome
» Radargram with subtracted background
m Comments

» For the detection of a static person the background subtraction method needs a
longer memory, for a moving person shorter memory shall be used
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Amplitude

Phase 3: Background subtraction

m Exponential averaging method: illustration Output signal: hy(t, T)
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Phase 4: Enhancement of target echo

I
m Purpose

» Improvement of target echo to-noise-and clutter ratio (SNCR)

m Outcome
» Radargram with highlighted (enhanced) echo of traget

m Method 1

» Range filtering using band-pass FIR or I[IR filters (phase
characteristic has to be considered)
» Note: frequency band 0.4 — 1.4 GHz has been recommended

m Method 2

» Slow-time filtering using low-pass or bandpass FIR or IIR filters

» Note: frequency band 0 Hz — 0.8 Hz or 0.2 Hz — 0.8 Hz has been recommended
m Method 3

» Singular value decomposition (SVD)
m Method 4

» CLEAN algorithm

> Note: CLEAN algorithm used to estimate the impulse response from observation
region is applied for the advanced elimination of false alarms

COST is supported by the
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Phase 4: Enhancement of target echo

m Slow-time filtering using bandpass IIR filters: illustration Output signal: hg(t, 7)
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Phase 5: Target detection

m Purpose

» Detection methods reach the decision whether a signal scattered by a moving
target is present or absent in the analyzed impulse response

m Basic approach
» Detection of periodical components in the radargram corresponding to a
periodical movement of human chest in the frequency band <0.2 Hz, 0.7 Hz>

m Method 1

» Estimation of power spectrum or its modification of signal h(t_k,t). Target is
visualized as a hot spot of the function H(t_k,f)

Methods of spectrum analyses:
Magnitude spectrum
Welch periodogram method

Hilbert-Huang transformation

YV V. V VYV V

S-tranformation

» Note: Using this approach, TOA is usually not estimated
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Phase 5: Target detection

m Method 1

» Example: Welch periodogram method
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Phase 5: Target detection

m Method 2
» Two-stage detector

m Outcomes

» The detector output is represented as a binary signal hp(t)
» Thevalue hp(t;) =" 1" means that a target is detected at the time instant t;

» Thevalue hp(t;) =" 0" means that no target is detected at the time instant t,

» Note: Using this approach, TOA can be estimated by using the detector output
m Description

» A detector consists of the combination of a power spectrum estimator, order-
statistic constant false alarm rate (OS-CFAR) detector and a simple threshold

detector (TD)
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Phase 5: Target detection

m General scheme of a detector

m Simple constant threshold detector

hg(t, 1)

_(Hy ifX(t,T) <y
"d(“)‘{Hg if X(t 1) >y

H():O,H1:1

Testing statistic
generation

X(t, 1)
p—)  COmparator

Threshold
estimation

|

y(t, T),y = const

Parameters controlling the detector
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Phase 5: Target detection

m Basic scheme of a constant false alarm detector (CFAR): Cell averaging CFAR

detector (CA-CFAR)

he(t, 1) Test cell hy(t,7)
= Cy | v | Cr-1| Cr | Crs1 Cyn Comparator >
l . l l l Hy, or H,
: /4

Average value estimation

l
Yo = Yo(Pra) _’(

X
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Phase 5: Target detection

m Method: Static person localization based on power spectrum estimation using
Welch periodogram

hg(t,T) hs(t, f) X1(0)

h.(t)

Xa(t) hy(D)

Power
spectrum
estimator

Estimator of the power
P allocated in the frequency
band <0.2 Hz, 0.7 Hz>

>

OS-CFAR
detector

Integtration of the
reflections from the [P+ TD
same target

The first detection stage

The second
detection stage
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Phase 5: Target detection

m Method: Static person localization based on power spectrum estimation using

Welch periodogram

m Block: Estimator of the power allocated in the frequency band <0.2Hz, 0.7Hz>
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Phase 5: Target detection

Amplitude
w A @ N @ «©
o o o o o o
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m Method: Static person localization based on power spectrum estimation using

Welch periodogram
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Phase 5: Target detection

m Method: Static person localization based on power spectrum estimation using
Welch periodogram

m Block: Order Statistic-CFAR detector (OS-CFAR, OS-CFAR is a modification of

CA-CFAR)
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Phase 6: TOA estimation

m Purpose

» Estimation of TOA / TOA pair for each target and each pair

m Basic approach

» Persons are considered as distributed targets, i.e., several reflections from the
same person can be received by Rx

» Several different TOAs correspond to the same distributed target

» The basic idea of the distributed target localization consists in a substitution of
the set of TOA corresponding to the same target with only one non-zero properly
estimated TOA referred to as the TOA of the distributed target

m Methods

> Trace online

> Trace connection

m Outcome

» TOA / TOA pair for each target and for each pair of antennas (Rx and Rxi)
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____ Phase 6: TOA estimation

m Trace connection method: illustration.
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Phase 7: Target localization

m Purpose
» Estimation of target coordinates
m Assumption

» Target is localized using UWB sensor equipped (at least) with 1 Tx and
2 Rx

m Methods
» Direct localization method (trilateration, multilateration method)
m Comments

» Geometrical interpretation of target localization. The target position is
represented by an intersection of two ellipses constructed by using knowledge
about Tx and Rx coordinates and estimated associated pair of TOAs

m Outcome
» Target coordinates

» Target trajectory estimation

el COST is supported by the
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Phase 7: Target localization

m Direct localization method. Illustration of multiple-target localization.

» Red mark: True target position

» Green mark: True target position

> Black circles: Tolerance area, N s
covered by a person
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lllustrative scenario

m lllustrative scenario: description.

» Red mark: True target position
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Illustrative scenario

Chip clock rate: 4,5 GHz

The period of M-sequences samples/time
length: 511 chips, 114 ns

Frequency band: DC-2,25 GHz

Antennas (Tx, Rx): Horn antennas

YV VY

Output power: 1ImW

Unambiguous range: cca 17 m

Y V V V V

Measurement rate: 13,5 IR per second

COST is supported by the
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lllustrative scenario

m lllustrative scenario: Raw radar signals.
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Illustrative scenario

m lllustrative scenario: Radargram with subtracted background.
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lllustrative scenario

m lllustrative scenario: Enhancement of target echo. Slow-time filtering using bandpass

lIR filters.
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lllustrative scenario

m lllustrative scenario: Target detection. Welch periodogram of radargram.
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Illustrative scenario

m lllustrative scenario: Target detection. OS-CFAR detector performance illustration.

Amplitude

70 T T T T 90 T T T T
— detector input 80. —— detector input |
o0 Rx1 —-—~ detector treshold | | Rx2 ———— detector treshold
70f 1
50r 1
1 60 1
|
I o
401 5 | 1 g 50+ i
5 g
30f | ‘1 1 <E( 401 i
|
|
) 30t " -
20+ | 1 I
. mr 2 20t E | . 4
| P
! ‘L | | " Mkm |
| = ' R
0 /Wj v«‘\ — 1 | 0_—‘::\/ W \\r\ ,4 | J/M
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Propagation time [ns] Propagation time [ns]

el COST is supported by the
N EU Framework Programme Horizon2020



Illustrative scenario

m lllustrative scenario: Target detection. OS-CFAR detector output.

120

1 T T T T T 1 ’ T T
0.9r . 0.9 ]
0.8 1 0.8- i
0.7 Rx1 ] 0.7k Rx2 |
o 0.6 1 o 0.6F 1
© ©
= =
5 0.5 1 505 1
S S
<04 1 < o4} -
0.3 . 0.3 ]
0.2 1 0.2 1
0.1 ‘ 1 0.1 1
0 1 | A | 1 \ 1 1 0 1 ‘ ‘ L l ‘ 1 1
0 20 4 60 80 100 120 0 20 40 60 80 100
Propagation time [ns] Propagation time [ns]

el COST is supported by the
e EU Framework Programme Horizon2020



Illustrative scenario

m lllustrative scenario: Target detection. TD input.
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Illustrative scenario

m lllustrative scenario: Target detection. TD output.
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m lllustrative scenario: TOA estimation.

Illustrative scenario
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Illustrative scenario

m lllustrative scenario: Target localization.
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____ Conclusions

m This lecture covers the localization of people based on the detection of
their vital signs.

m The sensor considered in this lecture is a GPR, which is an UWB radar.

m The main focus of the lecture is on the signal processing procedure for
the localization of a static person. Basic information is given also for
the localization of a moving person.

m The described approach can be used for humanitarian purposes and in
particular for the localization of people trapped under debris or snow,
after disasters such as earthquakes, collapses of buildings, avalanches,
explosions.
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