Ground Penetrating Radar

The first peer-reviewed scientific journal dedicated to GPR

Open access, open science

ISSN 2533-3100

Ground Penetrating Radar 2019, Volume 2, Issue 1, GPR-2-1-2,





Full text: PDF [4.9 MB, open access]


Abstract: Ground Penetrating Radar (GPR) systems shall be periodically calibrated and their performance verified, in accordance with the recommendations and specifications of the manufacturer. Nevertheless, most GPR owners in Europe employ their instrumentation for years without ever having it checked by the

manufacturer, unless major flaws or problems become evident, according to the results of a survey carried out in the context of COST (European Cooperation in Science and Technology) Action TU1208 “Civil engineering applications of Ground Penetrating Radar.” The D6087–08 standard, emitted by the American Society for Testing Materials (ASTM International), describes four procedures for the calibration of GPR systems equipped with air-coupled antennas. After a critical analysis of those procedures, four improved tests were proposed by a team of Members of the COST Action TU1208, which can be carried out to evaluate the signal-to-noise ratio, short-term stability, linearity in the time axis, and long-term stability of the GPR signal. This paper includes a full description of the proposed tests and presents the results obtained by scientists from Belgium, Czech Republic, Portugal, and Serbia, who executed the tests on their GPR systems. Overall, five pulsed control units and nine antennas were tested (five horn and four ground-coupled antennas, with central frequencies from 400 MHz to 1.8 GHz). While the performed measurements are not representative enough to establish absolute thresholds for the tests, they provide a valuable indication about values that one could obtain when testing GPR equipment, if the equipment is working reasonably well. Moreover, by periodically repeating the tests on the same equipment, it is possible to detect any significant shift from previously obtained values, which may imply that the GPR unit or antenna under test is not working in a normal or satisfactory manner. We also believe that executing the tests described in this paper is a useful exercise to gain awareness about the behaviour of a GPR system, its accuracy and limits, and how to best utilize it.


Keywords: Ground Penetrating Radar (GPR); Antennas; Calibration; System performance compliance; Signal-to-noise ratio; Signal stability; Signal linearity in the time axis.



[1] P. Annan, “GPR—History, Trends, and Future Developments,” Subsurface Sensing Technologies and Applications, vol. 3, no. 4, pp. 253–270, October 2002, doi: 10.1023/A:1020657129590.

[2] S. S. Artagan and V. Borecky, “History of using GPR for diagnostics of transport structures,” Proceedings of the 6th International Scientific Conference, Pardubice, Czech Republic, 3–4 September 2015, 7 pp.

[3] W. Wai-Lok Lai, X. Dérobert, and P. Annan, “A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis,” NDT & E International, vol. 96, pp. 58–78, June 2018, doi: 10.1016/j.ndteint.2017.04.002.

[4] D. J. Daniels and E. C. Utsi, “GPR case histories and known physical principles,” Proceedings of the 7th International Workshop on Advanced Ground Penetrating Radar (IWAGPR 2013), Nantes, France, 2–5 July 2013, pp. 1–9, doi: 10.1109/IWAGPR.2013.6601507.

[5] E. C. Utsi, “Ground Penetrating Radar: Theory and Practice.” Publishing House: Butterworth-Heinemann; Oxford, United Kingdom, April 2017; ISBN: 978008102216; 224 pp.

[6] A. Benedetto and L. Pajewski, Eds. “Civil Engineering Applications of Ground Penetrating Radar,” Publishing House: Springer International; Book Series "Springer Transactions in Civil and Environmental Engineering;" April 2015; e-book ISBN: 9783319048130; hardcover ISBN: 9783319048123; doi: 10.1007/9783319048130; 371 pp.

[7] X. Núñez-Nieto, M. Solla, P. Gómez-Pérez, and H. Lorenzo “GPR signal characterization for automated landmine and UXO detection based on machine learning techniques,” Remote Sensing, vol. 6, no. 10, pp. 9729–9748, October 2014, doi:10.3390/rs6109729.

[8] V. Ferrara, “Technical survey about available technologies for detecting buried people under rubble or avalanches,” WIT Transaction on The Built Environment, vol. 150, pp. 91-101, May 2015, doi: 10.2495/DMAN150091.

[9] M. Zajc, B. Celarc, and A. Gosar, “Structural–geological and karst feature investigations of the limestone–flysch thrust-fault contact using low-frequency ground penetrating radar (Adria–Dinarides thrust zone, SW Slovenia),” Environmental Earth Sciences, vol. 73, no. 12, pp. 8237-8249, June 2015, doi: 10.1007/s12665-014-3987-x.

[10] J. Jezova, L. Mertens, and S. Lambot, “Ground-penetrating radar for observing tree trunks and other cylindrical objects,” Construction and Building Materials, vol. 123, pp. 214-225, October 2016, doi: 10.1016/ j.conbuildmat.2016.07.005.

[11] L. Pajewski, M. Solla, and M. Küçükdemirci, “Ground-Penetrating Radar for Archaeology and Cultural Heritage Diagnostics: Activities Carried Out in COST Action TU1208,” in: Nondestructive Techniques for the Assessment of Historic Structures, L. M. da Silva Goncalves, H. Rodrigues, F. Gaspar, Eds., CRC Press – Taylor & Francis Group, Boca Raton, FL, USA, October 2017, ISBN 9781138710474, pp. 215-225.

[12] J. D. Taylor, Ed., “Advanced Ultrawideband Radar: Signals, Targets, and Applications,” Publishing House: CRC Press – Taylor & Francis Group; Boca Raton, FL, December 2016; ISBN 9781466586574, 494 pp.

[13] A. Zhao, Y. Jiang, and W. Wang, “Signal-to-noise ratio enhancement in multichannel GPR data via the Karhunen-Loève transform,” Proceedings of the Progress in Electromagnetic Research Symposium, Hangzhou, China, 22–26 August 2005, vol. 1, no. 6, pp. 754–757, 2005, doi: 10.2529/ PIERS041210090705.

[14] X. L. Travassos, D. A. G. Vieira, V. Palade, and A. Nicolas, “Noise reduction in a non-homogenous ground penetrating radar problem by multiobjective neural networks,” IEEE Transactions on Magnetics, vol. 45, no. 3, pp. 1454–1457, February 2009, doi: 10.1109/TMAG.2009.2012677.

[15] J. Li, C. Le Bastard, Y. Wang, G. Wei, B. Ma, and M. Sun, “Enhanced GPR signal for layered media time-delay estimation in low-SNR scenario,” IEEE Geoscience Remote Sensing Letters, vol. 13, no. 3, pp. 299–303, January 2016, doi: 10.1109/LGRS.2015.2502662.

[16] L. Pajewski and M. Marciniak, “Comparative study of GPR international standards and guidelines,” Short-Term Scientific Missions - Year 2, L. Pajewski & M. Marciniak, Eds.; Publishing House: Aracne; Rome, Italy, May 2015; ISBN 978-88-548-8488-5. Available in open access on the website of COST Action TU1208:

[17] ASTM D6087-08(2015)e1 “Standard Test Method for Evaluating Asphalt-Covered Concrete Bridge Decks Using Ground Penetrating Radar,” ASTM International, West Conshohocken, PA, 2015.

[18]M. R. Mahmoudzadeh Ardekani and S. Lambot, “Full-Wave Calibration of Time- and Frequency-Domain Ground-Penetrating Radar in Far-Field Conditions,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 664–678, January 2014, doi: 10.1109/TGRS.2013.2243458.

[19] L. Mertens, A. P. Tran, and S. Lambot, “Determination of the stability of a pulse GPR system and quantification of the drift effect on soil material characterization by full-wave inversion,” Proceedings of the 15th International Conference on Ground Penetrating Radar (GPR 2014), 30 June – 4 July 2014, Brussels, Belgium, pp. 480–483, doi: 10.1109/ICGPR.2014.6970471.

[20] A. Van der Wielen, “Characterization of thin layers into concrete with Ground Penetrating Radar,” PhD Thesis; Université de Liège, Liège, Belgium, 28 March 2014; 228 pp. (available for free download at, last checked 10 July 2018).

[21] F. I. Rial, H. Lorenzo, A. Novo, and M. Pereira, “Checking the signal stability in GPR systems and antennas,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 4(4), pp. 785–790, December 2011, doi: 10.1109/JSTARS.2011.2159779.

[22] T. Scullion, C. L. Lau, and T. Saarenketo, “Performance specifications of ground penetrating radar,” Proceedings of the 6th International Conference on Ground Penetrating Radar (GPR 1996), 30 September–3 October 1996, Sendai, Japan, pp. 341–346.

[23] T. Scullion, C. L. Lau, and Y. Chen, “Implementation of the Texas Ground Penetrating Radar system,” Interim Report No. FHWA/TX-92/1233-1, Texas Department of Transportation, November 1992 (revised April 1994), 102 pp.

[24] R. W. Jacob, J. F. Hernance, “Precision GPR measurements: Assessing and compensating for instrument drift,” in Proceedings of the 10th International Conference on Ground Penetrating Radar (GPR 2004), 21–24 June 2004, Delft, The Netherlands, pp. 159–162.

[25] G. Manacorda and M. Miniati, “An easy way of checking impulsive georadar equipment performances,” Proceedings of the 8th International Conference on Ground Penetrating Radar (GPR 2000), 23-26 May 2000, Gold Coast, Australia, 2000, pp. 44–49.

[26] F. Benedetto and F. Tosti, “A signal processing methodology for assessing the performance of ASTM standard test methods for GPR systems,” Signal Processing, vol. 132, pp. 327–337, 2017, doi: 10.1016/j.sigpro. 2016.06.030.

[27] S. Sebesta, T. Scullion, and T. Saarenketo, “Using Infrared and High-Speed Ground-Penetrating Radar for Uniformity Measurements on New HMA Layers,” Report No. S2-R06C-RR-1 of the Second Strategic Highway Research Program, Transportation Research Board of the National Academies, 2013, 81 pp.

[28] D. Goulias and M. Scott, “Effective Implementation of Ground Penetrating Radar (GPR) for Condition Assessment & Monitoring of Critical Infrastructure Components of Bridges and Highways,” Final Report No. MD-15-SHA-UM-3-11, State Highway Administration of Maryland Department of Transportation, January 2015, 173 pp.

[29] R. W. Jacob and J. F. Hermance, “Assessing the precision of GPR velocity and vertical two-way travel time estimates,” Journal of Environmental Engineering and Geophysics, vol. 9, no. 3, pp. 143–153, September 2004, doi: 10.4133/JEEG9.3.143.

[30] R. W. Jacob and J. F. Hermance, “Random and non-random uncertainties in precision GPR measurements: Identifying and compensating for instrument drift,” Subsurface Sensing Technologies and Applications, vol. 6, no. 1, pp. 59–71, January 2005, doi: 10.1007/s11220-005-4226-z.

[31] H. Liu, B. Xing, J. Zhu, B. Zhou, F. Wang, X. Xie, and Q. H. Liu, Fellow, “Quantitative Stability Analysis of Ground Penetrating Radar Systems,” IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 4, April 2018, pp. 522–526, doi: 10.1109/LGRS.2018.2801827.

[32] Webpage of the Final Conference of COST Action TU1208 “Civil engineering applications of Ground Penetrating Radar” (Warsaw, Poland, 25–27 September 2017): finalconference.html

[33] M. Vrtunski, L. Pajewski, X. Derobert, Ž. Bugarinović, A. Ristić, M. Govedarica, “GPR antenna testing based on COST Action TU1208 guidelines,” Geophysical Research Abstracts, European Geosciences Union (EGU) General Assembly 2017, 8–13 April 2018, Vienna, Austria, article ID EGU2018-2353, p. 1.

[34] R. Persico, A. Provenzano, C. Trela, M. Sato, K. Takahashi, S. Arcone, S. Koppenjan, L. G. Stolarczyk, E. C. Utsi, S. Ebihara, K. Wada, E. Pettinelli, L. Pajewski, “Recommendations for the Safety of People and Instruments in Ground-Penetrating Radar and Near-surface Geophysical Prospecting.” Publishing House: EAGE Publications bv; Houten, The Netherlands, June 2015, ISBN 9789462821620, 68 pp.

[35] A. Balanis, “Antenna Theory: Analysis and Design,” IV edition. Publishing House: John Wiley & sons Inc; Hoboken, NJ, January 2016, ISBN: 9781118642061, 1072 pp.

[36] ASTM D4748–10(2015) “Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar,” ASTM International, West Conshohocken, PA, 2015.


License & Cite this article information

Unrestricted use, distribution, and reproduction in any medium of this article is permitted, provided the original article is properly cited. Please cite this article as follows: L. Pajewski, M. Vrtunski, Ž. Bugarinović, A. Ristić, M. Govedarica, A. van der Wielen, C. Grégoire, C. Van Geem, X. Dérobert, V. Borecky, S. Serkan Artagan, S. Fontul, V. Marecos, and S. Lambot, "GPR system performance compliance according to COST Action TU1208 guidelines," Ground Penetrating Radar, Volume 1, Issue 2, July 2018, pp. 2-36,

For information concerning COST Action TU1208 and TU1208 GPR Association, please take contact with the Chair of the Action and President of the Association, Prof. Lara Pajewski. From 4 April 2013 to 3 October 2017, this website was supported by COST, European Cooperation in Science and Technology - COST is supported by the EU RTD Framework Programme Horizon2020. TU1208 Members are deeply grateful to COST for funding and supporting COST Action TU1208. As of 4 October 2017, this website is supported by TU1208 GPR Association, a non-profit association stemming from COST Action TU1208.